AVATAR

viernes, 20 de enero de 2012

PROBLEMAS DE TAHA RESUELTOS EN LINGO

Problema 2. De Taha

Max=10*(x11+x12)+12*(x21+x22);
x11+x21<=35*y1;
x12+x22<=35*y2;
y1+y2=1;
x11<=20*y1;
x21<=10*y1;
x12<=12*y2;
x22<=22*y2;
@gin(x11);
@gin(x12);
@gin(x21);
@gin(x22);
@bin(y1);
@bin(y2);
Rows=      8 Vars=      6 No. integer vars=      6  ( all are linear)
 Nonzeros=     21 Constraint nonz=    16(    10 are +- 1) Density=0.375
 Smallest and largest elements in absolute value=    1.00000        35.0000
 No. < :   6 No. =:   1 No. > :   0, Obj=MAX, GUBs <=   2
 Single cols=    0

 Optimal solution found at step:         2
 Objective value:                 384.0000
 Branch count:                           0


                       Variable           Value        Reduced Cost
                            X11       0.0000000E+00       0.0000000E+00
                            X12        12.00000           0.0000000E+00  De este producto se elaboran 12 und.
                            X21       0.0000000E+00       0.0000000E+00
                            X22        22.00000           0.0000000E+00   De este producto se elaboran 22 und.
                             Y1       0.0000000E+00       0.0000000E+00
                             Y2        1.000000           -64.00000

                            Row    Slack or Surplus      Dual Price
                              1        384.0000            1.000000   Utilidad
                              2       0.0000000E+00       0.0000000E+00
                              3        1.000000           0.0000000E+00
                              4       0.0000000E+00        320.0000
                              5       0.0000000E+00        10.00000
                              6       0.0000000E+00        12.00000
                              7       0.0000000E+00        10.00000
                              8       0.0000000E+00        12.00000
Elegimos  la segunda alternativa  de producción, del producto1 elaboraremos 12
Und. y del producto2 elaboraremos 22 und. Obtenemos una utilidad de $ 384.00.


 Problema 3: De taha

Max=25*x11+30*x21+22*x31+25*x12+30*x22+22*x32;
3*x11+4*x21+5*x31<=100*y1;
4*x11+3*x21+6*x31<=100*y1;
3*x12+4*x22+5*x32<=90*y2;
4*x12+3*x22+6*x32<=120*y2;
y1+y2=1;
@gin(x11);
@gin(x21);
@gin(x31);
@gin(x12);
@gin(x22);
@gin(x32);
@bin(y1);
@bin(y2);
Rows=      6 Vars=      8 No. integer vars=      8  ( all are linear)
 Nonzeros=     25 Constraint nonz=    18(     2 are +- 1) Density=0.463
 Smallest and largest elements in absolute value=    1.00000        120.000
 No. < :   4 No. =:   1 No. > :   0, Obj=MAX, GUBs <=   2
 Single cols=    0

 Optimal solution found at step:        14
 Objective value:                 780.0000
 Branch count:                           5

                       Variable           Value        Reduced Cost
                            X11        12.00000           0.0000000E+00
                            X21        16.00000            3.333332
                            X31       0.0000000E+00        19.66667
                            X12       0.0000000E+00       0.0000000E+00
                            X22       0.0000000E+00       0.0000000E+00
                            X32       0.0000000E+00        18.71428
                             Y1        1.000000           0.0000000E+00
                             Y2       0.0000000E+00        83.33333

                            Row    Slack or Surplus      Dual Price
                              1        780.0000            1.000000
                              2       0.0000000E+00        8.333333
                              3        4.000000           0.0000000E+00
                              4       0.0000000E+00        6.428571
                              5       0.0000000E+00        1.428571
                              6       0.0000000E+00        833.3333
La producción se realiza en el lugar 1.Del producto1 se elaboran 12 und. Del producto 2 se elaboran 16 und. Del producto 3 no se elaboran ninguna unid. La utilidad Que se obtiene es de $780.


Problema 5: De taha

Max=25*x1+30*x2+45*x3;
3*x1+4*x2+5*x3<=100;
4*x1+3*x2+6*x3<=100;
x3>=5;
@gin(x1);
@gin(x2);
@gin(x3);
Rows=      4 Vars=      3 No. integer vars=      3  ( all are linear)
 Nonzeros=     13 Constraint nonz=     7(     1 are +- 1) Density=0.812
 Smallest and largest elements in absolute value=    1.00000        100.000
 No. < :   2 No. =:   0 No. > :   1, Obj=MAX, GUBs <=   1
 Single cols=    0
 Optimal solution found at step:         5
 Objective value:                 825.0000
 Branch count:                          1
                       Variable           Value        Reduced Cost
                             X1       0.0000000E+00        5.000000
                             X2        11.00000           0.0000000E+00
                             X3        11.00000            15.00000
                            Row    Slack or Surplus      Dual Price
                              1        825.0000            1.000000
                              2        1.000000           0.0000000E+00
                              3        1.000000           0.0000000E+00
                              4        6.000000           0.0000000E+00
La planta fabricará El producto2 y el producto3 las unidades son 11 und. 11 unid respectivamente. La utilidad de dicha producción es de $ 825 que obtendrá la empresa.

No hay comentarios:

Publicar un comentario